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ABSTRACT
\

An asymptotic expansion obtained previously is employed to
explore the limits of validity of plane wave and line source assumptions
for the incident wave, in the problem of scattering of waves by an infinite
cylinder. Detailed numerical calculations are made in the cases where
the incident wave is a plane wave, line source radiation, and slotted
cylinder radiation. Curves are presented showing the variation of the
amplitude of the scattered wave with respect to spacing of the source

and scatterer. The effect of the directivity of a source is discussed.«
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A NUMERICAL INVESTIGATION OF SCATTERING OF RADIATION

OF AN ASYMMETRIC SOURCE BY CIRCULAR CYLINDER

N. Zitron and J. Davis

Introduction

When radiation from a cylindrical source is incident on a cylindrical
scatterer, the wave incident upon the scatterer and, consequently, the
scattered wave will depend on the distance between the source and the
scatterer. If, for example, the spacing is infinite, the incident wave
will be a plane wave. If the spacing is large, but not infinite, the incident
wave is equivalent to an isotropic cylindrical wave emanating from a line
source or an equivalent isotropic source. As the source is brought closer
to the scatterer, the directivity pattern of the source becomes more important
and any anisotropies of the source must be taken into account.

The uncertainties in results based on a plane wave assumption are
discussed in the field of microwaves by Kodis (1] , Wiles and Mc Lay[ 2],

Jordan and Mc Lay[3], Subbaro and Mc Lay[4] [5) and King and Wu[ 6] .
(7]

The possibility of uncertainties in acoustics is discussed by Tamarkin

and by Lindsay (8] . Analytical and numerical work has been carried out by

Sponsored by the Mathematics Research Center, U.S. Army, Madison, Wisconsin,
under Contract No. DA-11-022-ORD-2059.
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Faran[9] , Froese and Walt[w], and Shenderov[u] in the problem of line source
radiation by a circular cylinder, in attempts to test the validity of the plane
wave approximation. In this paper, the line source case is treated in greater
detail and the case of anisotropy of the incident waves is also treated, with
slotted cylinder radiation taken as an example. Consequently, some idea of
the range of validity of the isotropy approximation for the incident wave is
obtained.

The intuitive considerations discussed above have been made more precise
by an expansion th eoremof Karp and Zitron[lz]. This theorem permits the
representation of the field in a neighborhood disjoint from the circular cylinder
circumscribed about the source region. The remresentation is in the form of
an asymptotic series of inverse half~integral powers of kd, for large kd,
where k is the propagation constant and d is the spacing. The coefficients
in this series are linear combinations of products of derivatives of plane waves
with respect to angle of incidence and derivatives of the complex scattering
amplitude of the far field with respect to angle of incidence. Since the response
of a scatterer to the derivative of a plane wave is the derivative of the response
to a plane wave, this expansion theorem can be employed to obtain successive
orders of approximation of the scattered field in terms of the spacing. The
procedure is discussed elsewhere by Zitron and Karp[3] in greater detail. The
principal purpose of this paper is to carry out numerical computations of these

terms in order to obtain some idea of the ranges of validity of the plane wave
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and line source approximations. The quantities to be computed are the
amplitudes of the far fields scattered by conducting circular cylinders for
various angles of observation in the cases where the incident radiation is a
plane wave, line source or isotropic radiation, and slotted cylinder radiation

as a function of the spacing between the source and the scatterer.

An Analysis of the Problem

Consider a source or collection of sources of infinite length contained in

a bounded cylindrical region. (See figure 1),

/ A ‘\ I 4
!' _ ) o r /
\ »

Figure 1

Consider a cylindrical neighborhood B at some distance "d" from A where
"d" is the distance between the axis of the circular cylinder circumscribed
about A and the axis of B . Let u(r, 6) be a solution of the reduced wave

equation
(1) Vu+kiu=0

with time dependence em1 wt . If £(6) is the complex far field amplitude of

the sources in A, the field u(r, 6) radiated by these sources has the

following integral representatlon[ul.
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1

where C, is the Sommerfeld contour for the Hankel function H%l)(kr) « The

1
following asymptotic expansion of u in the neighborhood B has been obtained

by Karp and Zitron l:12].

(2t)
~ ikd & h0) T(t+d
(3) Ul 0 =& 4 (e (kayt* 3

2t~q

(2t) 2t 2t=p c °C - [a=]1 D3]

(9 vhae WO =), 0 5 = p%on®Pp o P o) vio)
=0 4=0 j=0

q q!
and Cj .jl(q-j)! ’

v(p) = e11:(xcos B+y sinp) ps =§s§

where x and y are defined in Figure 1, and where B is defined by
=iv
cosP(s) =1+ isz where f(0) =0, and ps(o) =+N2Z e 4

The following differentiation symbols are used:

ru bl &
(=S e Valo

The following explicit form of (Bs(on(p ) obtained elsewhere [13] is included
T !{2 )l
for convenience. For p even, ((58(0))(p ) = (ps(on(zv) =2" +} e"‘(""‘f)‘? Z;VVI) .

For podd, (8 (0P =0 ,
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If u is represented asymptotically as

A

(5) u = ng;o u_ where u =—-§-q

(kd) ’

the first few terms of (5) are

kd =3

(kd)

3
kd-=5 2 [2-1] D]
(M uy = ~/'_21_q__1__4_[z £(0) v(o)+lzf(o)v(o)J

2(kd) * J=0

Vo JMkd-Z) [4 [¢=i] D] 2 , [2-]
i

(8) u, = Y cff(O) v(0y +10 Z cj £(0) v(0)+%f(0)v(o)]
32(kd) =0 J=0
m
k=) [ (6410 [4~i] ] [2-4] [1]
(9 uy= “’—-z_lﬁ——“—[ZCff(oa v(0)+3 Tojao) wo)+22 Y el e o)
48(kd)

+ 2282 (q) v(O)J

where the subscript i denotes the incident field.

After obt aining the expansion of the radiated field in the neighborhood B,
the next problem is to find the response of a circular cylinder to this incident field,
The problem may be stated as follows:

Let u = u, +ug where u is the incident field, ug is the scattered field,
and u is the total field. All fields satisfy the wave equation (1) and u

satisfies the Sommerfeld radiation condition
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(10) lim VT(%r"‘--ikupo .
r=-+00
The boundary conditions considered here are the Dirichlet condition, u =0
on the cylinder boundary and the Neumann condition, %E = 0 on the boundary,

The Dirichlet condition corresponds to the electric field parallel to the
cylinder axis in the electromagnetic case or a "soft" scatterer in the acoustic
case. The Neumann condition corresponds to the magnetic field parallel to the
cylinder axis in the electromagnetic case and a "hard" scatterer in the acoustic
case,

The terms W of the incident field are in the form of linear combinations of
derivatives of plane waves with respect to angle. The response to the derivative
of a plane wave will be the derivative of the response to a plane wave and,
therefore, the response to each term u

in
linear combination of derivatives of the response to a plane wave.

of this incident field will be the same

The response to a plane wave has the form

(1) u =) a Hﬁ’ (kr) cos n(@ ~)

n==00

where the an are determined by the boundary conditions.

The far field may be represented in the form

(12) ug ~ H(kr) £_(6, B)

where H(kr) = ltr_kzr- e"(kr-%)
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and the complex scattering amplitude of the far field is given by

[
(13) £(0,p) =2 a ™" cosn(e-p)

n==%

where 0 is the angle at which the scattered field is observed and P is the
angle of incidence., If £ 1([5) denotes the complex far field amplitude of the
incident radiation, the scattered fields corresponding to the incident fields

(6 - 9) may be written in the form

o i(kd -7)
(14) u g -mmq_el £ (0) £ (8, 0)
(kd)? ®
i(kd = "') 2, [2=1 D]
(15) u, = Hk) Vare T [ f(O) £(0, 0) + = £,(0) £_(o, o)}
2(kd) b=

i

1(kd =28
(16) u_, = H(kr)ﬂ e 1 Z c f[4 ] fm(e 0)+1oZ | f[" j]f[’](e, 0) +
32(kd)?2 j=0 j=0

2
4qmgme

1
(1) u_, = Hgk) Nz ot (kd=7) [ icé,[ 11 1] [4-] [1]

4
35 & 4

£00) £ (0,00 +2 Y c¥t Tt (e, 0

48(kd) T j=0 0 £ ¢ )4;“ s (9:0)

259 & (231 0]
chzfi(O)f (8, o)+z:f £(0)1_ (e, 0)] .
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A measure of caution should be obsarved in attempting to apply these results.
The first correction term ug, given by (15) is of order (kd)-*, but the
rescattering of the term U by the source contributes a term of order (kd)"1 .*
In an experimental situation, this term, which depends upon the structure of

the source, would have to be considered unless the rescattering effect of the

source is small or the source is shielded against radiation from the scatterer,

*»
See reference [13] for details,
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Method of Computation

In the numerical calculation it was convenient to use the relation
btk - z
(18) u (6, 1) = () 2 ) p(q)

to normalize the far field amplitude F _(0) « A general program was written for
the Control Data Corporation 1604, in which the modulus of F(6) was calculated
for various values of ka, kd, 6 and fgi)(o) , using formulas (14-17) . The
incident wave was normalized in such a way that a standard field was produced
at the position of the center of the scatterer in the absence of the scatterer,

From formulas (6=9) above, the following expansion was obtained for u

1o‘y_0
the field at this position:
il 2
(19) u, | x= ~mel(kd-2)'(0) 1-4 Li-fi ](0)
io y=0 Npr] i 2kd | 4 fi(o)
r
[4] [2]
1 fL(°)+§fi (0)+l
s(kd)® | £(0) T2 £(0) T16
[[6] A4l 2]
P ——] L, ;___u L2971 (0) 225
sa(ka)® [ {0 74 (00 T 16 £(0) T
+ * o 0
() 1 4 -1 4
1((3) s normalized so that uio,}z(;B =1 ; in other words the ratio a0 <=0
y=0

was used instead of fi(ﬁ) « The introduction of this normalization and consequent
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simplification gave the following formula for F(8) :

(20) F(6) =-g- , Where

[ i]
2 (0) i1]
N~E {fs(e, 0) - de[}_“, cjz NG £ (e, 0) + 5 £ (e, o)]

[4-11 (2-1]

4 £00) [i] 2 f(O) [1]
-3 4 f(e,0)+§2 - — (o, o)+-9—f(e 0)]
8(kd)2[jz:oj 500 s 2 £C1 50 s

o tor 0] " f[fg,” o

j
i 6 1 °

| bt har oot g e

[2-1]

2, f(0) [i]
+ 222 Zo ij—@fs(e 0) + 221 (o, o)]} and
j=

I Nkd_
D= =0

It was assumed in all of these calculations that the scatterer was a circular
cylinder of radius a, satisfying either Dirichlet or Neumann boundary conditions

on its surface. In these cases, the coefficients a in formula (l1) are easily

derived: I_(ka)
a = M B——  for the Dirichlet condition, or
H“)
(ka)
m I' (ka
a ==iM I for the Neumann condition,

H (ka)
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where Im and H(nll) are Bessel and Hankel functions respectively. Tables [15]
are available of Bessel and Hankel functions expressed in terms of a magnitude

Cn and a phase sn . The relevant properties are these:

J (ka) = C_(ka) sin 6 (ka)

H(n“ (ka) = -1C_(ka) oion(ka) .

These relations and some further simplifications give the following formula for

the Dirichlet boundary condition:

-]
(21) £(0,B)=1 ), ¢ sins e " cosn(0-p), where
n=0

€= min (2, n+l) .

Similarly, for the Neumann condition, there exists a set of s'n(ka) ‘s, which

give:

® ]
£(0,B)=1), ¢_sins e 16n cosn(0-6) .
s n n
n=0
In calculating N and D, at least two terms, and not more than four terms
of their respective expansions, were used. Terms were calculated in ascending

powers of Ela , stopping after a term, if this term was smaller in magnitude than

o b e e 2 T
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a certain percentage (usually between 1% and 10%) of the total sum. For N at
each angle and for D, arecord is printed indicating whether or not this
convergence criterion had been met, and if it had been met, how many terms
were needed.

In the above, N and D were calculated separately, and then N was
divided by D . An alternative method, tried for sources for which f(B) is
even, consisted of dividing N by D analytically, retaining terms up to order

(—ki-)-s . For f(B) even, the following holds:

@ o~ 2 {fs(e. 0) - Seg) £a(8 O

[2]
4 [2 £ (0
- [fi ](e, 0) + 2 ](a, 0) + 4£(0, 0) Pl ]
8(kd) £0)
[6] (4] (2] [4] [¢] £ [3}
—4— -i-*-
+ o [fs (0, 0) +8£_(6, 0) +13f (0, 0)£(0) + 12£ {8, 0) o
Bt [fi0)?
d P il
+ 27£_(8, 0) - 12( ] .
. 8 £, (0) £,(0)

The results calculated in this manner agreed well with the results of the previous
method; moreover, in the case of derivatives fi(z(?)) of large magnitude the last
method converges faster.

Three different types of sources were considered: a plane wave, a line

source (f(8) =1), and a slotted cylinder. This latter source was reported on
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Source

Asymmetric Slotted Source

Symmetric Slotted Source

Figure 2

0

Scatterer

Scatterer
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[16]

by Papas and King" -, and consists of a circular cylinder of radius c, with

a tangential electric field Ee(e) prescribed on its surface, where

a " [}
Ee(e) = Eo for [0 - y[< > (the "slot")
and Eg0) =0 for [ -y 3—‘;- .

The letter y stands for the orientation of the slot, and « stands for the
angular width of the slot (see figure 2). In this problem, the z-component of
the magnetic field satisfies the scalar wave equation with Neumann boundary

[n]

conditions. Values of £ 1(0) were computed from the formula for the far field

given by Papas and Ktng[l6]

+ Values of 0° and 90° were used for y, while
a was set at , 00l radius.

Checks were made at ka =1, and 3.4 for the line source, using vector
summation rules developed by Lowan, Morse, Feshbach, and Laxns] and

Paran[9]. This approach results in a convergent series for F(6), in ascending

powers of ka .,

A Discussion of the Results

The complex scattering amplitude of the far field was calculated for all
integral values of kd from 1to 10 and also ka = 3. 4, where "a" is the
radius of the scatterer, and for values §= 2, 3, 5,10, 30, 50, 100, and * for
the line source and the slotted cylinder. The case g' = @ represents plane

wave incidence. Both the Dirichlet and the Neumann conditions were applied in
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the line source calculations, Curves and tables for ka =1, 3.4, and 10 are
included.

The first case considered is that of the line source (Tables 1 - 4 and
Figures 3 = 7) and its limiting case, the plane wave. In this case, the rate
of convergence of the expansion in half-integral powers of kd is good in the
sense that for the Neumann condition only four terms of the asymptotic expansion
were needed to maintain a deviation of less than 2% from the more exact formula
of Lowan; Morse, Feshbach, and Lax[lsl for d > 2a in the cases ka =1 and
ka = 3.4 and for d > 8a in the case ka =10 , Table 5 shows the minimum
values of g— for which one, two, or three terms are sufficient to meet specified
cutoff criteria. The cutoff criteria employed are termination of calculation of
the series when the addition of the last term calculated changed the resuilt by
less than 1%. The curve obtained here for kd = 6,8 differs from that of
Faran[9]. A computational check of the analytical expression from which Faran's
curves were obtained seems to indicate a numerical error in his curve,

The next case considered was the slotted cylinder source (see figures 8, 9)
with plane symmetry, such that kc = 8 and with an aperture of .00l radians ,
An examination of formulas (20) and (22) reveals the effect of the shape or
directivity terms, i.e. the terms that depend upon derivatives of fi(ﬂ) . The
directivity effect is of second order in '1?15 o The first order term in the far
field is cancelled by another first order term in the normalization. Thus, a
symmetrically oriented source may be approximated by a line source for large

kd . The approximation for this slotted source is good to 1% for .Cal >8 .
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The rate of convergence of the series was much slower for the slotted source
than for the line source at the same distance, since the derivatives of fi(p)
(Table 6) are somewhat large, For small kd, moreover, the series failed to
converge at all in some cases, Thus, for such small kd, the addition of
further terms in the series would not improve the accuracy for the slotted
cylinder as it would for the line sowce. Furthermore, since the difference
between the scattered fields of the line source and the slotted cylinder is of
second order in k—ld- , Vvalues of kd small enough to produce a large directivity
effect were also small enough to cause convergence difficulties. A set of
minimum values of ka for specified accuracy is contained in Table 5.

A more extreme directivity effect was obtained by rotating the source 90° .
The amplitude of the derivatives of £ 1((3) was thus increased and the rate of

convergence decreased. Another directivity effect (Figures 10, 11) was a

e
d

The magnitude of the directivity effect for the rotated slotted cylinder can be

rotation of the scattering pattern by an angle of radians for small c/d .
appreciable for large d/a . For example, if ka =1 and §= 100, the
difference between the scattered field of a line source and a rotated slotted
cylinder can be as high as 8% at some angles and as high as 25% for ka = 3.4
and $=20 .

a

These results shed some light upon the reasons for the relative success of the
aforementioned experimenters[1 -51,[7] in obtaining agreement between their

results and the theory. Their sources were sufficiently far away for the values
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of wave length and cylinder radii employed. The symmetric nature of the
source reduced the directivity effects considerably and made a line source

approximation reasonable,

Concluding Remarks

In conclusion, the results may be summarized as follows:
1. In the case of a symmetrical source oriented symmetrically with respect to
the scatterer, the line source approximation is often good for relatively small
spacing between source and scatterer.
2. In the asymmetric case, the directivity is a much more important factor then
in the symmetric case,
3. The success of various experimenters in obtaining agreement with experiment
has been due in part to their use of symmetric sources and also to the relatively
large spacing between sources and scatterers,
4. The asymptotic expansion upon which these calculations are based exhibits

convergence difficulties if d is sufficiently small.
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TABLE I

THE FARFIELD AMPLITUDE F(9) ka=1.,0
0 DIRICHLET CONDITION NEUMANN CONDITION SLOTTED SOURCE MOMIMWMPI)
SYMMETRIC ROTATED

PLANE LINE SOURCE PLANE LINE SOURCE 5=0 5=0 5=90 kd=100

WAVE |kd=20, |kd=10, |kd=5, [kd=2. WAVE |kd=20, |kd=10, |kd=5. |kd=2, }|kd=20, [kd=10, {F(©6) |F(-0)

0° |1.375}1.356 |1,337 1,299 |1.20 0.512 |0.530 | 0,548 [0,587 |0,711 || 0,539 (0,60 0,511 {0,511
10° {1.360)1,.342 [1,323 1.288 {1.19 0.499 {0.516 0,534 |0,572 |0.693 [|0.525 [0,58 ]0.512 {0,48
20° |1.319}1.302 |1.285 }1.253 |1.17 0.462 |0.478 |0.495 {0.530 |0,641 ([ 0.486 (0,54 |0.487 |0,44
30° |1.254}1.240 [1,226 1,200 [1.137 0.408 |0.422 |0.437 |0.467 |0.565 || 0,430 |0.48 |0,442 |0,.38
40° |1.172}1.162 |1,152 |1.134 [1.094 |[0.353 |0.364 [0,375 [0.397 [0.464 || 0.369 |0.40 |0.386 |0,33
50° |1.083{1.077 |1.072 |1.063 |1.049 ||0.318 |0.323 |0.328 |0.339 |0,369 || 0,325 |0,343 |0,338 |0,31
60° (0,994 {0.993 |0.992 ]|0.993 |1.005 0.322 [0.322 |0,321 |0.319 |0.303 ||O,322 |0,32]1 (0,321 {0.33
70° |0.915|0,918 {0,922 }0,931 {0,966 0.367 |0.363 | 0,358 |0.347 |0,298 |} 0,361 |0,346 0,345 |0.39
80° | 0,851 /0,859 |0,866 }0.882 |0.935 0,435 |0,429 | 0,423 (0,409 |0.352 || 0.426 [0.41 [(0,403 [0,47
90° | 0,806 |0,816 }0.827 |0.848 |0,914 || 0,507 {0,501 | 0,495 |0.48]1 {0,432 || 0,498 10.48 {0,473 | 0,54
100° {0,778 0,791 (0,803 |0,.828 {0.901 0.573 |0,567 | 0,562 10,550 |0.512 {{ 0.565 |0,55 {0.542 |0.60
110° {0,766 |0,779 [0,792 |0.818 0,895 0,628 |0.623 |0,618 |0.608 |0.583 || 0,621 [0.60 (0,603 |0,65
120° {0,7630.776 |0.790 {0.816 |0,897 0.669 |0,665 10,661 10,653 |0,637 |} 0.663 j0.65 [0,.651 [0,.68
130° {0,766 {0,779 {0.792 {0.819 |0.896 0.699 0,695 | 0,691 |0,685 ]0.679 || 0,693 |0.68 |0.686 [0,71
140° |o0.771 0,784 {0,796 |0.823 |0.900 }}0.718 |0.714 |0O,711 |0,706 }0,708 |} 0,714 0,701 |0,710 (0,72
150° j0,7770,788 {0,801 (0.827 |0.904 }|0.729 |0.725 |0,.723 |0,719 {0.725 |{0,725 [0.714 |0.724 {0,73

160°,] 0,781 |0,792 |0. 805 0,830 |0,907 0.735 |0,731 {0,729 |0.725 |0.73 0,731 |0.722 |0.732 |0.735

170° | 0,784 0,795 {0,807 |0,833 |0,908 ||0,.737 |0.,734 |[0,731 |0,728 |0,74 0.734 {0,725 |0,736 | 0,737

180° | 0,784 |0, 796 —o. 808 10,834 |0.909 0.738 |0,734 |0,732 .o. 729 |0,74 0.734 10,726 (0,737 |0,737
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#365 -23-
TABLE VI
SLOTTED SOURCE DERIVATIVES fE“]
For kc =8,0, a=,00]
y=0° “ y =90°

’ [n] [n] [n] [n]

Ry, (O) 10N R (£, (0)) I, (0D
0 1.000 0.000 1.000 0. 000
1 0. 000 0. 000 - .653 8. 600
2 - .223 7.958 -70.920 ~11.293
3 0. 000 0,000 118. 52 -629. 29
4 || 176,142 -14.930 5420, 0 1182.0
5 0.000 0,000 ~11021, 51323,
6 295.78 ~7546, 5 -476006. ~97416.
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Far Field Amplitude
Line Source at Various Distances D
Scattered from Cylinder ka =1,
Neumann Boundary Condition

Figure 3
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Far Field Amplitude
Line Source at Various Distances D
Target is Cylinder ka = 1.
Dirichlet Boundary Conditions

Figure 4
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Line Source With Cylindrical Target ka = 3.4
Far Field Amplitude, Neumann Boundary Condition

Figure 5
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Line Source With Cylindrical Target ka = 3.4
Far Field Plotted
Dirichiet Boundary Condition

Figure 6
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Far Field Amplitude ka = 10. kd = 100.
Neumann Conditions

Figure 7




Far Field Amplitude
Sources:
-— ==« - = Planc Wave
- Line Source kd =10,
Symmetric Slotted Cylinder kd = 10.

Target: Cylinder ka = 1. Neumann Boundary Conditions
Figure 8
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Far Field Amplitude ka = 3.4
Line Sowce kd =17
Slotted Source kc = 2. eo .05r kd = 17

Figure 9




#365 -31-

Far Field Amplitude
Rotated Slotted Source kc = 8. Width . 00Ir, @
Scatterer is Cylinder ka = 1.0 at Distance
kd = 100. is Far Field of Plane Wave.

-Neumann Boundary Condition
Figure 10
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X

Source: Slotted, With kc = 8,0, Distance kd = 68,0, Orientation
Scatterer: Cylinder, With ka = 3.4, Neumann Boundary Conditions

Figure 11
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